图书介绍
李代数和代数群 英文【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

- (法)陶威尔(P.TAUVEL)著 著
- 出版社: 北京:世界图书北京出版公司
- ISBN:9787510070228
- 出版时间:2014
- 标注页数:653页
- 文件大小:82MB
- 文件页数:673页
- 主题词:李代数-研究-英文;代数群-研究-英文
PDF下载
下载说明
李代数和代数群 英文PDF格式电子书版下载
下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!
(文件页数 要大于 标注页数,上中下等多册电子书除外)
注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具
图书目录
1 Results on topological spaces1
1.1 Irreducible sets and spaces1
1.2 Dimension4
1.3 Noetherian spaces5
1.4 Constructible sets6
1.5 Gluing topological spaces8
2 Rings and modules11
2.1 Ideals11
2.2 Prime and maximal ideals12
2.3 Rings of fractions and localization13
2.4 Localizations of modules17
2.5 Radical of an ideal18
2.6 Local rings19
2.7 Noetherian rings and modules21
2.8 Derivations24
2.9 Module of differentials25
3 Integral extensions31
3.1 Integral dependence31
3.2 Integrally closed domains33
3.3 Extensions of prime ideals35
4 Factorial rings39
4.1 Generalities39
4.2 Unique factorization41
4.3 Principal ideal domains and Euclidean domains43
4.4 Polynomials and factorial rings45
4.5 Symmetric polynomials48
4.6 Resultant and discriminant50
5 Field extensions55
5.1 Extensions55
5.2 Algebraic and transcendental elements56
5.3 Algebraic extensions56
5.4 Transcendence basis58
5.5 Norm and trace60
5.6 Theorem of the primitive element62
5.7 Going Down Theorem64
5.8 Fields and derivations67
5.9 Conductor70
6 Finitely generated algebras75
6.1 Dimension75
6.2 Noether's Normalization Theorem76
6.3 Krull's Principal Ideal Theorem81
6.4 Maximal ideals82
6.5 Zariski topology84
7 Gradings and filtrations87
7.1 Graded rings and graded modules87
7.2 Graded submodules88
7.3 Applications90
7.4 Filtrations91
7.5 Grading associated to a filtration92
8 Inductive limits95
8.1 Generalities95
8.2 Inductive systems of maps96
8.3 Inductive systems of magmas,groups and rings98
8.4 An example100
8.5 Inductive systems of algebras100
9 Sheaves of functions103
9.1 Sheaves103
9.2 Morphisms104
9.3 Sheaf associated to a presheaf106
9.4 Gluing109
9.5 Ringed space110
10 Jordan decomposition and some basic results on groups113
10.1 Jordan decomposition113
10.2 Generalities on groups117
10.3 Commutators118
10.4 Solvable groups120
10.5 Nilpotent groups121
10.6 Group actions122
10.7 Generalities on representations123
10.8 Examples126
11 Algebraic sets131
11.1 Affine algebraic sets131
11.2 Zariski topology132
11.3 Regular functions133
11.4 Morphisms134
11.5 Examples of morphisms136
11.6 Abstract algebraic sets138
11.7 Principal open subsets140
11.8 Products of algebraic sets142
12 Prevarieties and varieties147
12.1 Structure sheaf147
12.2 Algebraic prevarieties149
12.3 Morphisms of prevarieties151
12.4 Products of prevarieties152
12.5 Algebraic varieties155
12.6 Gluing158
12.7 Rational functions159
12.8 Local rings of a variety162
13 Projective varieties167
13.1 Projective spaces167
13.2 Projective spaces and varieties168
13.3 Cones and projective varieties171
13.4 Complete varieties176
13.5 Products178
13.6 Grassmannian variety180
14 Dimension183
14.1 Dimension of varieties183
14.2 Dimension and the number of equations185
14.3 System of parameters187
14.4 Counterexamples190
15 Morphisms and dimension191
15.1 Criterion of affineness191
15.2 Affine morphisms193
15.3 Finite morphisms194
15.4 Factorization and applications197
15.5 Dimension of fibres of a morphism199
15.6 An example203
16 Tangent spaces205
16.1 A first approach205
16.2 Zariski tangent space207
16.3 Differential of a morphism209
16.4 Some lemmas213
16.5 Smooth points215
17 Normal varieties219
17.1 Normal varieties219
17.2 Normalization221
17.3 Products of normal varieties223
17.4 Properties of normal varieties225
18 Root systems233
18.1 Reflections233
18.2 Root systems235
18.3 Root systems and bilinear forms238
18.4 Passage to the field of real numbers239
18.5 Relations between two roots240
18.6 Examples of root systems243
18.7 Base of a root system244
18.8 Weyl chambers247
18.9 Highest root250
18.10 Closed subsets of roots250
18.11 Weights253
18.12 Graphs255
18.13 Dynkin diagrams256
18.14 Classification of root systems259
19 Lie algebras277
19.1 Generalities on Lie algebras277
19.2 Representations279
19.3 Nilpotent Lie algebras282
19.4 Solvable Lie algebras286
19.5 Radical and the largest nilpotent ideal289
19.6 Nilpotent radical291
19.7 Regular linear forms292
19.8 Cartan subalgebras294
20 Semisimple and reductive Lie algebras299
20.1 Semisimple Lie algebras299
20.2 Examples301
20.3 Semisimplicity of representations302
20.4 Semisimple and nilpotent elements305
20.5 Reductive Lie algebras307
20.6 Results on the structure of semisimple Lie algebras310
20.7 Subalgebras of semisimple Lie algebras313
20.8 Parabolic subalgebras316
21 Algebraic groups319
21.1 Generalities319
21.2 Subgroups and morphisms321
21.3 Connectedness322
21.4 Actions of an algebraic group325
21.5 Modules326
21.6 Group closure327
22 Affine algebraic groups331
22.1 Translations of functions331
22.2 Jordan decomposition333
22.3 Unipotent groups335
22.4 Characters and weights338
22.5 Tori and diagonalizable groups340
22.6 Groups of dimension one345
23 Lie algebra of an algebraic group347
23.1 An associative algebra347
23.2 Lie algebras348
23.3 Examples352
23.4 Computing differentials354
23.5 Adjoint representation359
23.6 Jordan decomposition362
24 Correspondence between groups and Lie algebras365
24.1 Notations365
24.2 An algebraic subgroup365
24.3 Invariants368
24.4 Functorial properties372
24.5 Algebraic Lie subalgebras375
24.6 A particular case380
24.7 Examples383
24.8 Algebraic adjoint group383
25 Homogeneous spaces and quotients387
25.1 Homogeneous spaces387
25.2 Some remarks389
25.3 Geometric quotients391
25.4 Quotient by a subgroup393
25.5 The case of finite groups397
26 Solvable groups401
26.1 Conjugacy classes401
26.2 Actions of diagonalizable groups405
26.3 Fixed points406
26.4 Properties of solvable groups407
26.5 Structure of solvable groups409
27 Reductive groups413
27.1 Radical and unipotent radical413
27.2 Semisimple and reductive groups415
27.3 Representations416
27.4 Finiteness properties420
27.5 Algebraic quotients422
27.6 Characters424
28 Borel subgroups,parabolic subgroups,Cartan subgroups429
28.1 Borel subgroups429
28.2 Theorems of density432
28.3 Centralizers and tori434
28.4 Properties of parabolic subgroups435
28.5 Cartan subgroups437
29 Cartan subalgebras,Borel subalgebras and parabolic subalgebras441
29.1 Generalities441
29.2 Cartan subalgebras443
29.3 Applications to semisimple Lie algebras446
29.4 Borel subalgebras447
29.5 Properties of parabolic subalgebras450
29.6 More on reductive Lie algebras453
29.7 Other applications454
29.8 Maximal subalgebras456
30 Representations of semisimple Lie algebras459
30.1 Enveloping algebra459
30.2 Weights and primitive elements461
30.3 Finite-dimensional modules463
30.4 Verma modules464
30.5 Results on existence and uniqueness467
30.6 A property of the Weyl group469
31 Symmetric invariants471
31.1 Invariants of finite groups471
31.2 Invariant polynomial functions475
31.3 A free module478
32 S-triples481
32.1 Jacobson-Morosov Theorem481
32.2 Some lemmas484
32.3 Conjugation of S-triples487
32.4 Characteristic488
32.5 Regular and principal elements489
33 Polarizations493
33.1 Definition of polarizations493
33.2 Polarizations in the semisimple case494
33.3 A non-polarizable element497
33.4 Polarizable elements499
33.5 Richardson's Theorem502
34 Results on orbits507
34.1 Notations507
34.2 Some lemmas508
34.3 Generalities on orbits509
34.4 Minimal nilpotent orbit511
34.5 Subregular nilpotent orbit513
34.6 Dimension of nilpotent orbits517
34.7 Prehomogeneous spaces of parabolic type518
35 Centralizers521
35.1 Distinguished elements521
35.2 Distinguished parabolic subalgebras523
35.3 Double centralizers525
35.4 Normalizers528
35.5 A semisimple Lie subalgebra530
35.6 Centralizers and regular elements533
36 σ-root systems537
36.1 Definition537
36.2 Restricted root systems539
36.3 Restriction of a root544
37 Symmetric Lie algebras549
37.1 Primary subspaces549
37.2 Definition of symmetric Lie algebras553
37.3 Natural subalgebras554
37.4 Cartan subspaces555
37.5 The case of reductive Lie algebras557
37.6 Linear forms559
38 Semisimple symmetric Lie algebras561
38.1 Notations561
38.2 Iwasawa decomposition562
38.3 Coroots565
38.4 Centralizers568
38.5 S-triples570
38.6 Orbits573
38.7 Symmetric invariants579
38.8 Double centralizers584
38.9 Normalizers588
38.10 Distinguished elements589
39 Sheets of Lie algebras593
39.1 Jordan classes593
39.2 Topology of Jordan classes596
39.3 Sheets601
39.4 Dixmier sheets603
39.5 Jordan classes in the symmetric case605
39.6 Sheets in the symmetric case608
40 Index and linear forms611
40.1 Stable linear forms611
40.2 Index of a representation615
40.3 Some useful inequalities616
40.4 Index and semi-direct products618
40.5 Heisenberg algebras in semisimple Lie algebras621
40.6 Index of Lie subalgebras ofBorel subalgebras625
40.7 Seaweed Lie algebras629
40 8 An upper bound for the index630
40.9 Cases where the bound is exact635
40.10 On the index of parabolic subalgebras638
References641
List of notations645
Index647
热门推荐
- 1984513.html
- 549659.html
- 2728956.html
- 3270592.html
- 805512.html
- 3692381.html
- 3527528.html
- 376409.html
- 2140815.html
- 2097079.html
- http://www.ickdjs.cc/book_2103059.html
- http://www.ickdjs.cc/book_1062267.html
- http://www.ickdjs.cc/book_1229702.html
- http://www.ickdjs.cc/book_1991121.html
- http://www.ickdjs.cc/book_2222908.html
- http://www.ickdjs.cc/book_3690452.html
- http://www.ickdjs.cc/book_361289.html
- http://www.ickdjs.cc/book_2656365.html
- http://www.ickdjs.cc/book_8074.html
- http://www.ickdjs.cc/book_3093024.html