图书介绍

高等微积分 影印版【2025|PDF下载-Epub版本|mobi电子书|kindle百度云盘下载】

高等微积分 影印版
  • (美)DavidM.Bressoud著 著
  • 出版社: 北京:清华大学出版社
  • ISBN:9787302214816
  • 出版时间:2009
  • 标注页数:388页
  • 文件大小:16MB
  • 文件页数:405页
  • 主题词:微积分-高等学校-教材-英文

PDF下载


点此进入-本书在线PDF格式电子书下载【推荐-云解压-方便快捷】直接下载PDF格式图书。移动端-PC端通用
种子下载[BT下载速度快]温馨提示:(请使用BT下载软件FDM进行下载)软件下载地址页直链下载[便捷但速度慢]  [在线试读本书]   [在线获取解压码]

下载说明

高等微积分 影印版PDF格式电子书版下载

下载的文件为RAR压缩包。需要使用解压软件进行解压得到PDF格式图书。

建议使用BT下载工具Free Download Manager进行下载,简称FDM(免费,没有广告,支持多平台)。本站资源全部打包为BT种子。所以需要使用专业的BT下载软件进行下载。如BitComet qBittorrent uTorrent等BT下载工具。迅雷目前由于本站不是热门资源。不推荐使用!后期资源热门了。安装了迅雷也可以迅雷进行下载!

(文件页数 要大于 标注页数,上中下等多册电子书除外)

注意:本站所有压缩包均有解压码: 点击下载压缩包解压工具

图书目录

1 F=ma1

1.1 Prelude to Newton's Principia1

1.2 Equal Area in Equal Time5

1.3 The Law of Gravity9

1.4 Exercises16

1.5 Reprise with Calculus18

1.6 Exercises26

2 Vector Algebra29

2.1 Basic Notions29

2.2 The Dot Product34

2.3 The Cross Product39

2.4 Using Vector Algebra46

2.5 Exercises50

3 Celestial Mechanics53

3.1 The Calculus of Curves53

3.2 Exercises65

3.3 Orbital Mechanics66

3.4 Exercises75

4 Differential Forms77

4.1 Some History77

4.2 Differential 1-Forms79

4.3 Exercises86

4.4 Constant Differential 2-Forms89

4.5 Exercises96

4.6 Constant Differential к-Forms99

4.7 Prospects105

4.8 Exercises107

5 Line Integrals,Multiple Integrals111

5.1 The Riemann Integral111

5.2 Line Integrals113

5.3 Exercises119

5.4 Multiple Integrals120

5.5 Using Multiple Integrals131

5.6 Exercises134

6 Linear Transformations139

6.1 Basic Notions139

6.2 Determinants146

6.3 History and Comments157

6.4 Exercises158

6.5 Invertibility163

6.6 Exercises169

7 Differential Calculus171

7.1 Limits171

7.2 Exercises178

7.3 Directional Derivatives181

7.4 The Derivative187

7.5 Exercises197

7.6 The Chain Rule201

7.7 Using the Gradient205

7.8 Exercises207

8 Integration by Pullback211

8.1 Change of Variables211

8.2 Interlude with Lagrange213

8.3 Exercises216

8.4 The Surface Integral221

8.5 Heat Flow228

8.6 Exercises230

9 Techniques of Differential Calculus233

9.1 Implicit Differentiation233

9.2 Invertibility238

9.3 Exercises244

9.4 Locating Extrema248

9.5 Taylor's Formula in Several Variables254

9.6 Exercises262

9.7 Lagrange Multipliers266

9.8 Exercises277

10 The Fundamental Theorem of Calculus279

10.1 Overview279

10.2 Independence of Path286

10.3 Exercises294

10.4 The Divergence Theorems297

10.5 Exercises310

10.6 Stokes'Theorem314

10.7 Summary for R3321

10.8 Exercises323

10.9 Potential Theory326

11 E=mc2333

11.1 Prelude to Maxwell's Dynamical Theory333

11.2 Flow in Space-Time338

11.3 Electromagnetic Potential345

11.4 Exercises349

11.5 Special Relativity352

11.6 Exercises360

Appendices361

A An Opportunity Missed361

B Bibliography365

C Clues and Solutions367

Index382

热门推荐